
Implicit Spring Joint Drives

PhysX Team

August 14, 2023

Definitions

PhysX joint drives are essentially PD controllers that are implemented in an
implicit approach that can handle large gains without leading to instabilities
that an explicit approach would encounter.

We derive the dynamics in the SDK with a simple, 1D linear example where
a fixed-base link and a dynamic link are connected by a driven prismatic joint.

We define the following symbols

x Position [m]

v Velocity [m/s]

kp The spring stiffness, i.e. position/proportional gain [N/m]

kd The spring damping, i.e. velocity/derivative gain [Ns/m]

m The mass of the dynamic link. [kg]

F The drive/spring force that the fixed link applies to the moving link. [N]

τ The simulation time step. [s]

The dynamics of the prismatic joint position are given by

ẍ =
F

m
. (1)

We often use the impulse and discretized formulations of the dynamics as follows:

∆v := τ ẍ =
τF

m
. (2)

If we define the unit response and impulse as

r := 1/m (3)

λ := τF (4)

respectively, we can rewrite (2) as

∆v = rλ. (5)

For articulations in general, the unit response r considers the articulated spatial
inertia, i.e., it linearizes the response of the full articulation to impulses applied
at the joint drive dof.

1



PGS Position Iteration

The following is valid for a force drive (PxArticulationDriveType::eFORCE).
During PGS position iterations, the solver applies impulse deltas at the

prismatic joint such that the drive force is evaluated at the end-of-timestep
joint velocity and position, which is conceptually equivalent to an implicit Euler
integration step.

At each iteration, the new drive impulse is computed from the previous drive
impulse plus the current iteration delta

λi = λi−1 +∆λi (6)

from which we can compute the current iteration’s end-of-timestep joint velocity
and position

vi = vi−1 +∆vi = vi−1 +∆λir (7)

xi = x0 + viτ (8)

where we used the linear response from (5) and x0 is the joint position at the
beginning of the timestep.

Given both the position and velocity, the current drive impulse is

λi = τ (kp (xT − xi) + kd (vT − vi)) . (9)

Substituting the position from (8)

λi = τ (kp (xT − (x0 + viτ)) + kd (vT − vi)) (10)

and then the velocity from (7) and the impulse from (6) we get

λi−1 +∆λi = τ (kp (xT − (x0 + (vi−1 +∆λir) τ)) + kd (vT − (vi−1 +∆λir))) .
(11)

We solve for ∆λi and get

∆λi =
1

τ (τkp + kd) r + 1
(τkdvT + τkp (xT − x0)− τ (τkp + kd) vi−1 − λi−1) .

(12)
We introduce the following substitutions:

a := τ (τkp + kd) [Ns2/m = kg] (13)

b := τkdvT [Ns] (14)

γ :=
1

ar + 1
[−] (15)

which then simplify (12) to

∆λi = γ (b+ τkp (xT − x0)− avi−1 − λi−1) . (16)

During the SDK drive constraint update, we do not compute the delta but the
full current drive impulse λi. This makes it straightforward to apply the drive
impulse limit in a subsequent step. From (6) we get

λi = γ (b+ τkp (xT − x0)− avi−1) + (1− γ)λi−1. (17)

2



Acceleration Drives

For the acceleration drive (PxArticulationDriveType::eACCELERATION), we
can derive the coefficients analogously - the only difference is that instead of a
force, the drives output a joint acceleration and the spring stiffness and damping
now have units

kαp =

[
ms−2

m

]
= [s−2] (18)

kαd =

[
ms−2

ms−1

]
= [s−1] (19)

where the superscript α denotes the acceleration-drive quantity. The spring
equation therefore produces an acceleration ẍ that we convert to a force with

F = mẍ = r−1ẍ (20)

and get the acceleration-drive version of (9)

λi = τr−1
(
kαp (xT − xi) + kαd (vT − vi)

)
. (21)

We solve for ∆λα
i and get

∆λα
i =

1

τ
(
τkαp + kαd

)
+ 1

(
r−1

(
τkαd vT + τkαp (xT − x0)− τ (τkp + kαd ) vi−1)

)
− λα

i−1

)
.

(22)
We again introduce simplifying substitutions

aα := τ
(
τkαp + kαd

)
[−] (23)

bα := τkαd vT [m/s] (24)

γα :=
1

a+ 1
[−]. (25)

to produce:

λi = γαr−1
(
b+ τkαp (xT − x0)− avi−1

)
+ (1− γα)λα

i−1. (26)

TGS Position Iteration

TGS position iterations proceed by tracking the change in position bias ∆xi

that has accumulated over i position iterations, in addition to the velocity bias
∆vi that has accumulated over i velocity iterations. Both TGS and PGS track
changes to velocity bias but only TGS tracks changes to position bias.

When TGS solver mode is engaged, the joint position is forward integrated
with each incremental advance through the position iterations. This is the
mathematical equivalent of a sequence of nP simulation steps but with a sin-
gle position iteration each time. The total impulse that accumulates over nP

position iterations is therefore a linear sum of the impulses computed at each

3



position iteration. A more mathematical explanation starts at (17) and recog-
nises that λ1 is computed for each iteration but with λ0 = 0. The total impulse
that accumulates over all position iterations is then simply the sum over the
series of impulses {λi

1} generated by the iteration sequence.
Tracking ∆xi requires that the joint position is forward integrated using the

joint velocity. In doing so, time is advanced with each position iteration under
the requirement that after nP position iterations time has advanced by τ . The
timestep ρ of each position iteration is as follows:

ρ :=
τ

nP
(27)

Accounting for ∆xi requires a modification to (10):

λi = ρ (kp (xT − (x0 +∆xi−1 + viτ)) + kd (vT − vi)) (28)

Here, we have introduced a single extra term −ρkp∆xi−1 that does not occur
with PGS position iterations. With the knowledge that the total force is now
a linear sum of the force at each position iteration, we may derive the TGS
equivalent of (17). For force springs we have:

λi = γ (b+ ρkp (xT − x0)− ρkp∆xi−1 + avi−1) + λi−1. (29)

PGS Velocity Iteration

PGS velocity iterations are a direct continuation of position iterations. A key
point worth noting is that although all body positions are forward integrated
by τ in-between position and velocity iterations, the updated positions do not
feed into ∆x. Feeding ∆x into the velocity iterations would require the spring
constraint to settle on a new state that was not encountered during the posi-
tion iterations. This could create less stable results whereby a single velocity
iteration would upset an equilibrium achieved over many position iterations and
actually require many velocity iterations to settle on a new equilibrium. The
expectation is that a single velocity iteration does not significantly affect the
reported applied force provided there are sufficient position iterations to reach
a stable equilibrium.

TGS Velocity Iteration

TGS velocity iterations ought to proceed in exactly the same manner as PGS
velocity iterations: the difference between TGS and PGS ought to be limited
to the time-stepping scheme employed during the position iterations to advance
body state by τ . In practice, however, this does not work out well, particularly
in situations with a large number of position iterations and a single velocity
iteration.

To better understand the problem is it worth considering the timeline of
PGS. PGS first computes an impulse over multiple position iterations and then
forward integrates position in a single τ step. The change in position, however,

4



does not feed into the velocity iterations. This is crucially important because
it means that the addition of a single velocity iteration is no different to the
addition of an extra position iteration. A consequence of this observation is that
if there are sufficient position iterations to approach solver equilibrium then the
addition of a single velocity iteration makes no difference to the reported force.
TGS does not have this characteristic due to the time-stepping scheme employed
during the position iterations: with finite τ it is not possible to reconstruct in a
single velocity iteration the accumulative effect of the sequence of τ

nP
advances

that were computed during the position iterations. With TGS, the addition of
a single velocity iteration has a profound impact on the force applied by joint
drive. This is an undesired outcome that worsens as nP increases.

A simple solution to the time-stepping discrepancy described above is to
freeze the accumulated force at the end of the position iterations. During the
velocity iterations the spring force plays no further role in determining the
velocity that is passed to the next simulation step. This is achieved by setting
the delta force at each velocity iteration to zero. This is a better solution than
computing a less reliable force that corresponds to a different time-stepping
scheme with larger τ .

5


