
1d Constraint Formulation

PhysX Team

April 29, 2024

Preliminaries

A constraint concerns the relationship of the state of two rigid bodies (body 0
and body 1) with positions x0(t) and x1(t); and quaternions q0(t) and q1(t).

The state of the body pair s(t) is as follows:

s(t) = {x0(t), q0(t), x1(t), q1(t)} (1)

If the two rigid bodies have linear velocities v0(t) and v1(t); and angular veloc-
ities ω0(t) and ω1(t) then we may define:

v(t) = {v0(t), ω0(t), v0(t), ω1(t)} (2)

The two rigid bodies are subject to external forces fext0 and fext1 applied at
the centre of mass; and external torques τext0 and τext1:

Fext(t) = {fext0, τext0, fext1, τext1} (3)

The two rigid bodies are also subject to constraint forces fc0 and fc1 applied
at the centre of mass; and constraint torques τc0 and τc1. The purpose of
this document is to detail the constraint force calculation that will result in a
constraint force Fc(t) that will satisfy the constraint.

Fc(t) = {fc0, τc0, fc1, τc1} (4)

To compute the effect of Fext(t) and Fc(t) it is necessary to introduce a mass
matrix M :

M =


m0 0 0 0
0 I0 0 0
0 0 m1 0
0 0 0 I1

 (5)

where m0 and m1 are diagonal 3x3 matrices with the respective masses of bod-
ies 1 and 2 along each diagonal; and I0 and I1 are 3x3 matrices describing the
inertia with respect to the centre of mass of bodies 1 and 2 in the world frame.

1



To avoid confusion with I0 and I1, the identity matrix shall be henceforth de-
noted by E.

The bodies of the constraint have associated joint frames L1 and L1 that are
relative to the centre of mass:

L0 = {Lp0, Lq0} (6)

L1 = {Lp1, Lq1} (7)

where Lp0 and Lp1 represent the translations of the two joint frames; and Lq0
and Lq1 represent the rotations of the two joint frames.

Constrained Dynamics

The purpose of a constraint is to enforce a specific rule placed on the state of
the body pair s(t). Such a rule may be that the two bodies are separated by a
particular distance or that their separation projected along a direction must be
greater than zero. Any combination is possible. To avoid losing generality, the
constraint may be expressed as follows:

C(s) = 0 (8)

It is also possible to express a constraint as an inequality constraint (C(s) ≥ 0).
The remainder of this document, however, shall focus on equality constraints.

C(s) will be maintained for as long as Ċ is also zero. Appendix 1 demonstrates
that Ċ may be recast in the following form:

Ċ = Jv(t) = 0 (9)

In practice, it is not possible to ensure that the constraint is resolved exactly.
Indeed, it is typical for errors to accumulate due to time discretization and
rounding error. There is also the possibility a body pair will be initially con-
figured in a way that does not satisfy the associated constraint. To avoid drift
propagation and accumulation it is necessary to amend Equation (9) so that
v(t) accounts for the velocity required to counteract at least some of the error:

Jv(t) = −α
C(s)

dt
(10)

where dt is the timestep that will be used to forward integrate s(t) and α is
the ”Baumgarte” multiplier in range (0, 1). Increasing α will more aggressively
resolve the accumulated error but comes with the risk of adding energy to the
system because it necessarily overshoots the ideal velocity that would occur with
zero error.

Introducing a bias velocity b:

b = α
C(s)

dt
(11)

2



allows the following relationship:

Jv(t) + b = 0 (12)

It is also useful to introduce a target velocity vT for the constraint such that:

Jv(t) + b = vT (13)

This may be re-rexpressed as follows:

Jv(t) + b− vT = 0 (14)

The bodies of the constraint experience external forces Fext(t) and a constraint
force Fc(t):

v(t) = v(t− dt) + dtM−1{Fext(t) + Fc(t)} (15)

The goal now is to compute Fc(t) such that v(t) satisfies (14). This is made
possible by applying the rule [1] that a workless constraint force Fc(t) has the
following form:

Fc(t) = JTλ (16)

Substituting (16) and (15) into (14) reveals an equation for λ:

dt · λ = −(JM−1JT )−1{b− vT + Jvpre(t)} (17)

where
vpre(t) = J(v(t− dt) + dtM−1Fext(t)). (18)

The intermediate state velocity vpre(t) is the state velocity after applying ex-
ternal forces for the timestep dt but before applying the constraint forces.

There is now a recipe for computing and appying the constraint forces:

v(t) = vpre(t) + λ′M−1JT (19)

where

λ′ = − (b− vT + vn(t))

r
(20)

r = JM−1JT (21)

vn(t) = Jvpre(t) (22)

In practice, it is not sufficient to resolve a constraint just once because a typical
use case is multiple constraints that compete with each other. The solution is
to perform multiple passes over the list of all constraints and accumulate ∆v
each time a constraint is resolved. This observation leads to a generalisation of
the recipe for computing and applying the constraint forces:

λ′ = − (b− vT + v0)

r
− J∆v

r
(23)

∆v += λ′M−1JT (24)

vn = v0 +∆v (25)

3



where ∆v is the velocity change that accumulates over the solver iterations.
The parameter v0 represents the velocities immediately before the 1st solver
iteration; that is, v0 = Jvpre(t). Finally, the parameter vn denotes the velocities
after the nth solver iteration.

This formulation deserves a couple of remarks. The first thing to note is

that (b−vT+v0)
r is a constant and can be computed once before beginning the 1st

solver iteration. A final note is that the first solver iteration naturally begins
with ∆v = 0.

Examples

It is instructive to compute the Jacobian for a small number of simple examples.
To introduce basic concepts, a joint that locks relative linear motion along all 3
axes shall be discussed. This example is followed by a quick analysis of a joint
that locks angular motion along all 3 axes. With these examples in mind, the
concept of the 1d constraint is introduced.

It is worth noting that PhysX describes a joint as a collection of 1d constraints
where each constraint may constrain linear or angular motion on a single axis.
The sections on the spherical and angular joint are presented solely to introduce
concepts that are applied in the treatments of 1d constraints.

Spherical Joint

The spherical joint enforces the rule that the position of each body is maintained
at a constant distance from the joint anchor. If r0 is the vector from body 0 to
the joint anchor and r1 is the vector from body 1 to the joint anchor then we
may formulate the following constraint:

C(s) = (x0(t) + r0)− (x1(t) + r1) = 0 (26)

The constraint derivative is readily computed as follows:

Ċ = (v0(t) + ω0(t)× r0)− (v1(t) + ω1(t)× r1) = 0 (27)

The cross product terms may be re-rexpressed by introducing the equivalent
matrices R0 and R1:

Ċ = (v0(t) +R0ω0(t))− (v1(t) +R1ω1(t)) = 0 (28)

This reveals a form that matches (9).

Ċ = {E,R0,−E,−R1}v(t) (29)

The Jacobian of the spherical joint therefore has the form:

J = {E,R0,−E,−R1} (30)

It is straightforward to compute JM−1JT :

JM−1JT = m−1
0 +m−1

1 +R0I
−1
0 RT

0 +R1I
−1
1 RT

1 (31)

4



Angular Joint

Consider a joint that enforces the rule that two bodies do not rotate with respect
to each other. This can be achieved if the bodies maintain the same angular
velocity:

Ċ = ω0(t)− ω1(t) = 0 (32)

This can be re-expressed in a form that invokes the following Jacobian:

J = {0, E, 0,−E} (33)

It is straightforward to compute JM−1JT :

JM−1JT = I−1
0 + I−1

1 (34)

1d Linear Constraint

It is important to generalise to the case of a 1d linear constraint because PhysX
does not actually resolve groups of constraints as outlined in the earlier dis-
cussion of the spherical and angular joint. Instead, constraint types such as a
spherical or prismatic joint are constructed from collections of 1d constraints.

While it might be tempting to formulate 1d linear constraints by picking out
individual rows from the constraint equations presented for the spherical and
angular joint, this does not work. The problem here is that each row of the
spherical joint constraint equation represents an axis of the world frame. The
same is true of the angular joint constraint equation. A different technique is
required, ideally one that operates in the correct frame so that a linear con-
straint along x (or y or z) has persistent meaning when considering the relative
motion of two bodies with arbitrary rotation. The key to understanding 1d
linear constraints is an understanding of the frame used for the specification of
the Jacobian.

For the spherical constraint the following has already been demonstrated:

Ċ = (v0(t) + ω0(t)×R0)− (v1(t) + ω1(t)×R1) = 0 (35)

It is straightforward to express Equation (35) in the joint frame L0 associated
with body 0. This is achieved with the introduction of a rotation matrix Q that
is the 3x3 matrix equivalent of q0(t)Lq0. Accounting for a non-zero bias velocity
and non-zero target velocity specified in the world frame, we have the following:

Q−1{(v0(t) + ω0(t)×R0)− (v1(t) + ω1(t)×R1) + b− vT } = 0 (36)

It is now possible to pick out individual rows from (36) to compute the Jacobian
of a 1d linear constraint. The 1st row will correspond to a constraint along the
x-axis the joint frame, the 2nd row will correspond to a constraint along the
y-axis of the joint frame, and the 3rd row will correspond to a constraint along

5



the z-axis of the joint frame. Remembering that the inverse of a rotation matrix
is equal to its transpose allows us to cast (36) as 3 separate rows:

Qx · (v0(t)− v1(t)) +Qx · (ω0(t)× r0 − ω1(t)× r1) +Qx · (b− vT ) = 0 (37)

Qy · (v0(t)− v1(t)) +Qy · (ω0(t)× r0 − ω1(t)× r1) +Qy · (b− vT ) = 0 (38)

Qz · (v0(t)− v1(t)) +Qz · (ω0(t)× r0 − ω1(t)× r1) +Qz · (b− vT ) = 0 (39)

where Qx, Qy and Qz are the columns of Q and each row represents a constraint
along one axis of the joint frame L0 associated with body 0. The expressions
for each row may be recast in a form that matches the expected Jacobian form
by applying the triple product rule [2]:

a · (b× c) = b · (c× a) = c · (a× b) (40)

The result is as follows:

Qx · v0(t) + (r0 ×Qx) · ω0(t)−Qx · v1(t)− (r0 ×Qx) · ω1(t) + bx − vTx = 0
(41)

Qy · v0(t) + (r0 ×Qy) · ω0(t)−Qy · v1(t)− (r0 ×Qy) · ω1(t) + by − vTy = 0
(42)

Qz · v0(t) + (r0 ×Qz) · ω0(t)−Qz · v1(t)− (r0 ×Qz) · ω1(t) + bz − vTz = 0
(43)

where bx, by, bz, vTx, vTy, vTz are the individual components of the bias velocity
vector and target velocity vector expressed in the joint frame L0.

This exercise has revealed a general expression for a 1d constraint:

µ0 · v0(t) + κ0 · ω0(t) + µ1 · v1(t) + κ1 · ω1(t) + α ∗ ∆

dt
− vTar = 0 (44)

with J taking the form:
J = {µ0, κ0, µ1, κ1} (45)

and ∆ and vTar denoting the relevant element of C(s) and vT expressed in the
joint frame L0.

1d Angular Constraint

The 1d angular constraint follows a similar pattern to the 1d linear constraint.
The key once again is to choose a frame that allows a single row from the
Jacobian to be picked out in a meaningful way.

PhysX API

1d constraints are implemented in PhysX using the Px1dConstraint struct. This
struct closely follows the theoretical outline of constrained dynamics discussed

6



in earlier sections. More specifically, the struct specifies the four Jacobian terms
{µ0, κ0, µ1, κ1}, the geometric error ∆ and the target velocity vT .

The Jacobian specification involves the parameters linear0, angular0, linear1,
angular1 such that:

linear0 = µ0 (46)

angular0 = κ0 (47)

linear1 = −µ1 (48)

angular1 = −κ1 (49)

The parameter geometricError performs the role of ∆, while the parameter ve-
locityTarget performs the role of vT .

The solver seeks a new state velocity such that:

(linear0 · v0(t) + angular0 · ω0(t))

−(linear1 · v1(t) + angular1 · ω1(t))

+
geometricError

dt
−velocityTarget = 0

(50)

It is worth noting that the PhysX API does not allow users to set the Baumgarte
multiplier α. The Baumgarte multiplier α is internally set. When PGS is
employed the Bumgarte multiplier has value 1.0. When TGS is employed the
Baumgarte multiplier has value 1/sqrt(nbPosIters).

Implementation

Momocity

A key characteristic of the PhysX implementation is an optimisation that re-
duces the cost of computing λ′M−1JT . This optimisation is often referred to
as ”momocity”, a term used to indicate that we compute neither angular mo-
mentum nor angular velocity but something in-between. This system requires
all constraints to update the angular velocity in a very specific way so that the
intermediate angular momocity values may be unambiguously translated back
to angular velocity values. This does not affect linear velocities, which are com-
puted as expected.

If the Jacobian J has the mathematical form {µ0, κ0, µ1, κ1} then the expected
update order is that the angular velocities will be updated as follows:

∆ω0(t) = λ′I−1
0 κ0 (51)

∆ω1(t) = λ′I−1
1 κ1 (52)

7



It is also expected that the angular velocities will be projected onto the con-
straint using the angular terms of the Jacobian:

κ0 ·∆ω0(t) + κ1 ·∆ω1(t) (53)

PhysX deviates from this prescription. Instead of working with the Jacobian
J , PhysX internally works with a modified Jacobian J (m) and a modified state
velocity v(m)(t) such that the outcome of each constraint is a change to be
applied to the linear velocity and angular momocity.

J (m) = {µ0, κ
(m)
0 , µ1, κ

(m)
1 } (54)

κ
(m)
0 = I

− 1
2

0 κ0 (55)

κ
(m)
1 = I

− 1
2

1 κ1 (56)

v(m)(t) = {v0(t), ω(m)
0 (t), v1(t), ω

(m)
1 (t)} (57)

ω
(m)
0 (t) = I

1/2
0 ω0(t) (58)

ω
(m)
1 (t) = I

1/2
0 ω1(t) (59)

The angular momocities are updated as follows:

∆ω
(m)
0 (t) = λ′κ

(m)
0 (60)

∆ω
(m)
1 (t) = λ′κ

(m)
1 (61)

The terms ∆ω
(m)
0 (t) and ∆ω

(m)
1 (t) no longer represent changes to angular ve-

locity. Instead of using I−1
0 and I−1

1 to translate from angular momentum

to angular velocity, PhysX has used I
− 1

2
0 and I

− 1
2

1 to translate from angular
momentum to angular momocity. All that matters, however, is that angular
momocity is translated back to angular velocity when computing J∆v(t):

κ
(m)
0 ·∆ω

(m)
0 (t) + κ

(m)
1 ·∆ω

(m)
1 (t) (62)

PGS Implementation

The PGS implementation closely follows the recipe set out in Equation (23).
There are minor modifications to the model that introduce maximum impulse
strengths; and mass and inertia scaling. Furthermore, each constraint accumu-
lates an angular momocity rather than an angular velocity. In order to work
with angular momocities, the angular terms of the constraint Jacobian are mod-
ified in a pre-solver computation. Apart from these details, however, the recipe
set out earlier is followed as expected.

The key code snippet is as follows:

FScaleAdd(vMul, normalVel, constant)

8



with

vMul = −1

r
(63)

normalVel = J (m)∆v(m)(t) (64)

constant = − (b− vT + Jvpre(t))

r
(65)

The impulse applied by each constraint at each solver iteration is then clamped
so that the running total does not exceed a maximum specified for each con-
straint. The impulse that survives the clamp is added to the running total and
propagated to the linear velocities and angular momocities of the body pair as
described in Section Momocity.

One final remark is that the Baumgarte multiplier has value 1. This means
that the geometric error of a 1d constraint will be completely resolved in a
single position iteration if there are no other constraints present in the scene.

TGS

TGS has a more complicated implementation due to the need to update the Ja-
cobian J to account for changes to the state s(t) that occur at the end of each
solver iteration. In addition to updating the Jacobian it is also necessary to up-
date the geometric error to account for changes to the state s(t). It is tempting to
update these with an extra execution of the PxConstraintShaderTable::solverPrep()
callback at the beginning of each solver iteration. For performance reasons this
does not happen. Instead, the geometric error and the Jacobian J are updated
on the fly as required. This necessarily involves approximations that require
description and explanation.

The approximations are as follows:

� The inertia of each body remains constant over all solver iterations of a
single simulation step. This is required by the momocity optimisation.

� The linear terms of the Jacobian remain constant over all solver iterations
of a single simulation step.

The vectors r0 and r1 for any 1d constraint require an update every time
that constraint is visited because the rigid body poses are updated at the
end of each solver iteration. The Jacobian J (m) applied at each solver iter-
ation is therefore a mixture of constant terms computed once in the PxCon-
straintShaderTable::solverPrep() callback and terms that required an update
with each solver iteration.

J (m) = {µ0, I
− 1

2
0 ([κ0 + (r0 × µ0))] , µ1, I

− 1
2

1 [κ1 + r1 × µ1]} (66)

The momocity Jacobian J (m) is used to compute an update to the geometric
error. This is performed by tracking the change in position and angle that

9



accumulates over the solver iterations. Applying the momocity Jacobian J (m)

necessarily requires tracking the integrated angular momocity over the course
of the solver iterations rather than the integrated angular velocity. Tracking
the position and rotation requires knowledge of the state velocity v(m)(t) rather
than just ∆v(m)(t) that is tracked by PGS. The key point here is that with
PGS the body poses are only integrated once at the end of the solver so there is
no need to know the absolute state velocity v(t): it is sufficient to track ∆v(t)
during the solver iterations and then apply it to the state velocity v(t) once after
the solver is complete. This is not the case with TGS because the body poses
are integrated at the end of each solver iteration. It makes sense, therefore, for
TGS to track the state velocity v(t).

Prior to the start of the solver, body angular velocity is converted to angu-
lar momocity:

solverVel.angularVelocity = sqrtInertia * av;

The changes contributing to the geometric error are recorded as follows:

PxVec3 linearMotionVel = vel.linearVelocity;

const PxVec3 delta = linearMotionVel * dt;

...

PxVec3 unmolestedAngVel = vel.angularVelocity;

...

vel.deltaAngDt += unmolestedAngVel * dt;

vel.deltaLinDt += delta;

The code snippet that computes the impulse is as follows:

FScaleAdd(vMul, normalVel, constant)

This follows the PGS recipe with the exception that the value ”constant” must
be computed afresh each visit instead of being cached in a pre-solver preparation
step. One other change is that because we track v(t) instead of ∆v(t) there is
no need to account for Jvpre(t) when computing ”constant”:

const FloatV constant = FMul(recipResponse, FAdd(bias, targetVel));

A final remark is that the Buaumgarte multiplier has value 1√
nbPosIters

with

nbPosIters denoting the number of position iterations. It might be tempt-
ing to code the constraint so that it resolves all of the geometric error in
a single position iteration. This, however, will require a temporary velocity
nbPosIters∗geometricError

dt . This larger than desired velocity will propagate to all
other constraints in the system, which will in turn result in unwanted con-
sequences such as overly powerful friction forces. A compromise is to use

1√
nbPosIters

for the Bumgarte multiplier. This undershoots the geometric error

and requires more position iterations to approach a resolution to the geometric
error but helps avoid the introduction of large velocities on the early position
iterations that need resolution on the later position iterations.

10



Appendix 1: Proof of Jacobian Form

This section shall demonstrate that constrained dynamics may be cast in the
form Jv(t) = 0.

The proof begins with the chain rule:

Ċ =
∂C(s)

∂s

ds(t))

dt
(67)

The following also holds:
ds(t)

dt
= Sv(t) (68)

with

S =


E 0 0 0
0 Q0 0 0
0 0 E 0
0 0 0 Q1

 (69)

With the real part of the ith quaternion denoted by qi.w and the imaginary part
of the ith quaternion denoted by [qi.x, qi.y, qi.z]

T , Qi has the following form:

Qi =


−qi.x −qi.y −qi.z
qi.w qi.z −qi.y
−qi.z qi.w qi.x
qi.y −qi.x qi.w

 (70)

Substituting (68) into (67) reveals the following form

Ċ = Jv(t) (71)

with

J =
∂C(s)

∂s
S (72)

References

[1] Andrew Witkin, ”Physically Based Modeling: Principles and Practice Con-
strained Dynamics”

[2] ”Wiki triple product rule”

11

https://www.cs.cmu.edu/~baraff/sigcourse/notesf.pdf
https://www.cs.cmu.edu/~baraff/sigcourse/notesf.pdf
https://en.wikipedia.org/wiki/Triple_product

