Articulation Joint Friction

PhysX Team
April 28, 2025

Basics

In PhysX, joint friction combines Coulomb friction and viscous friction.
Coulomb friction arises between contacting surfaces and is velocity-independent.
PhysX distinguishes between:

e Static friction (7y): Prevents motion initiation
e Dynamic friction (Ty): Applies during motion, with Ty < T

Viscous friction is the velocity-dependent friction component in moving joints,
modeled as:
T, = —cv

where c is the viscous friction coefficient and v is the joint velocity.

1 API

Friction parameters are stored in a struct that accepts three parameters in the
constructor:

PxJointFrictionParams(const PxReal staticFrictionEffort_,
const PxReal dynamicFrictionEffort_,
const PxReal viscousFrictionCoefficient_)

Friction parameters can be defined per joint axis. The corresponding setter
and getter are listed below:

void setFrictionParams(PxArticulationAxis::Enum axis, const PxJointFrictionParams& params)
const PxJointFrictionParams& getFrictionParams(PxArticulationAxis::Enum axis) const

2 Implementation

The steps to solve friction in PhysX can be summarized as follows:
Per solver iteration i:

1. The impulse needed to reach zero velocity:

J! = —v; - reciprocalResponse (1)

where response is a value pre-computed for each joint by propagating
torque inwards to the root and propagating the subsequent joint velocity
outwards back to the joint. It allows joint torques to be mapped to joint
velocity changes.

2. Clamping based on accumulated impulse (let J? denote the accumulated

h N

friction impulse at the it iteration, and J* the pre-clamped impulse):
Ji=J" 4 (2)
3. Impulse clamping using Coulomb friction model (Js = dt * T - static

friction impulse, Jg = dt * T;; - dynamic friction impulse). Clamping Jt to
obtain final impulse J*:

if (J' < J,):
J=J
(3)
else :

Ji = —sign(v) min(|ji‘, Ja + cfv])

4. Compute impulse increment for current iteration:
AJ = J— gt (4)

The friction impulse can be visualized in Figure

Vi Vit

S \

[E—

Figure 1: Left: Friction Impulse vs. velocity of the joint before impulse
application. Right: Impulse vs. velocity after impulse application. The purple
line represents J?, the impulse required to bring the velocity to zero. The green
line shows the friction in the moving joints, which consists of both the dynamic
friction impulse and a viscous friction component.

3 Special Case

When externalForcesEveryTgsIterationEnabled is True, the friction im-
pulse methodology is adjusted to ensure equivalent results across these config-
urations:

(a) N sim steps of dt/N with 1 pos iter and PGS
(b) N sim steps of dt/N with 1 pos iter and TGS
(c) 1 sim step of dt with N pos iters and TGS
The difference with the standard implementation is twofold:

1. Effective timestep scaling: Static and dynamic friction impulses are
computed using the per-iteration timestep:
dt dt

Js:N'TSa Jd:N'Td (5)

where dt is the full timestep and N is the number of position iterations.

2. Iteration clamping: Impulse clamping operates on per-iteration values
rather than accumulated impulses.

4 Velocity Iterations

Velocity iterations are modeled similarly, as shown in Section [2] independent of
whether externalForcesEveryTgsIterationEnabled is True or False. Here,
the clamping is based on accumulated values, and the impulses are computed
using the dt corresponding to the full timestep.

	API
	Implementation
	Special Case
	Velocity Iterations

