Implicit Spring Joint Drives

PhysXTeam
April 23, 2024

Definitions

PhysX joint drives are essentially PD controllers that are implemented in an
implicit approach that can handle large gains without leading to instabilities
that an explicit approach would encounter.
We derive the dynamics in the SDK with a simple, 1D linear example where
a fixed-base link and a dynamic link are connected by a driven prismatic joint.
We define the following symbols

x Position [m]

v Velocity [m/s]

k, The spring stiffness, i.e. position/proportional gain [N/m]

kq The spring damping, i.e. velocity/derivative gain [Ns/m)]

m The mass of the dynamic link. [kg]

F The drive/spring force that the fixed link applies to the moving link. [N]
7 The simulation time step. [s]

The dynamics of the prismatic joint position are given by

i=— (1)

We often use the impulse and discretized formulations of the dynamics as follows:
TF

Ay =718 = — (2)
If we define the unit response and impulse as
r:=1/m (3)
A:=7F (4)
respectively, we can rewrite as
Av =7\ (5)

For articulations in general, the unit response r considers the articulated spatial
inertia, i.e., it linearizes the response of the full articulation to impulses applied
at the joint drive dof.

PGS Position Iteration

The following is valid for a force drive (PxArticulationDriveType: :eFORCE).
During PGS position iterations, the solver applies impulse deltas at the
prismatic joint such that the drive force is evaluated at the end-of-timestep
joint velocity and position, which is conceptually equivalent to an implicit Euler
integration step.
At each iteration, the new drive impulse is computed from the previous drive
impulse plus the current iteration delta

A= Nic1 + AN (6)

from which we can compute the current iteration’s end-of-timestep joint velocity
and position
V; = Vi1 + Av; = v;1 + AN (7)
Tr; = Xo + wT (8)
where we used the linear response from and x(is the joint position at the

beginning of the timestep.
Given both the position and velocity, the current drive impulse is

N =T (/fp (:ET — {EZ) + kyq (UT - Uz)) (9)

with x7 denoting the target position of the constraint and vy denoting the
target velocity of the constraint.
Substituting the position from

)\i :T(kp ({ET— ((E()+'Ui7'))+kd (’I)T—’l)i)) (].0)
and then the velocity from and the impulse from @ we get
)\1_1 —|— A)\Z =T (kp (IT — (IO + (Uz'—l + A/\Z’I‘) 7')) —|— kd (’UT — (1}2‘_1 —|— A)\ﬂ’))) .

(11)
We solve for A\; and get

1
AN =
A T(Thy + kg)r +1

(tkqvr + Tkp (xr — x0) — 7 (Thp + ka) vic1 — Xiz1) -

(12)
We introduce the following substitutions that are also used in source code:

a =71 (Thky + kq) [Ns?/m = kg (13)

b:= Tkqur [Ns] (14)
1

e = (15)

which then simplify to

A)\l = I(b-ﬁ-TkP (QET —xo) — av;—1 _/\i—l)- (16)

During the SDK drive constraint update, we do not compute the delta but the
full current drive impulse A;. This makes it straightforward to apply the drive
impulse limit in a subsequent step. From @ we get

A = l‘(b-ﬁ-Tk‘p (mT —LL'()) — av;—1 —)\1;1) + Xi—1 (17)
=2 (b+7ky (x7 —20) —avi—1) + (1 —) X1 (18)
= b+ a7k, (7 — x0) — zavi—1 + (1 — z) X1 (19)

The SDK drive constraint prep precomputes the coefficients of this A; update in
the solver setup. See setupInternalConstraintsRecursive and setupDrive
in particular for the CPU code.

We compute the following members of ArticulationInternalConstraint:

driveTargetVelPlusInitialBias = b+ x7k, (7 — 20) [Ns] (20)
O\
driveVelMultiplier = 5y, =~ "0 kel (21)
v;
‘ . oA
driveImpulseMultiplier = IV 11—z -] (22)
i1
o . O\
driveBiasCoefficient = = a7k, [Ns/m] (23)
afET
driveTargetPosBias = —8—; = x7kpur [N] (24)

where driveBiasCoefficient and driveTargetPosBias are used only in TGS,
but we state it here for completeness.

Acceleration Drives

For the acceleration drive (PxArticulationDriveType::eACCELERATION), we
can derive the coefficients analogously - the only difference is that instead of a
force, the drives output a joint acceleration and the spring stiffness and damping
now have units

=[] < 25)
K = [Z} = [s7"] (26)

where the superscript a denotes the acceleration-drive quantity. The spring
equation therefore produces an acceleration & that we convert to a force with

F=mi=r"'% (27)
and get the acceleration-drive version of @

N =7t (kS (xr — @) + k§ (vr — v3)) (28)

We solve for AN and get

« 1 — « « «

AN = T R A 1 (r~" (rkGvr + Tk (xp — m0) — 7 (Thp + k§) vi_1))

(29)
We again introduce simplifying substitutions
a® =T (Tk:;‘ + kg‘) -] (30)
b := TkGur [m/s] (31)
1

¥ = —]. 2
o 8 (32)

Note the new units for the constants that follow from the spring-damper pa-
rameters. We get

Ai=a®(r "t (b+ Tk (xp — m0) — avi—1) — AYp) + AY (33)
r b+ TEY (w7 — mo) — avi—1) + (1 — 2®)AY ;. (34)

:Qja

The acceleration-drive members of ArticulationInternalConstraint are:

driveTargetVelPlusInitialBias = :Eo‘rfl'rk;‘ (1 — 20) + 2%~ ' [Ns]
(35)
. . . a)\i o —1
driveVelMultiplier = 5y, = LT a [kg]
v;
(36)
driveImpulseMultiplier = ——— =1 — g [-]
OXi—1
(37)
. . .. oA o,—1_ja
driveBiasCoefficient = =z%r 7k [Ns/m)]
axT p
(38)
. . a)\l a,,—1 [
driveTargetPosBias = — 5 — T Tk vr [N]
(39)

Note that the coefficient/constant units are identical to the force drive (they
must be).

TGS Position Iteration

The key difference between TGS position iterations and PGS position iterations
is that TGS additionally tracks the change in position bias Az; that accumulates
over i position iterations. PGS, on the other hand, assumes that the position
bias is a constant over the position iterations; that is, Ax; = 0.

When TGS solver mode is engaged, the joint position is forward integrated
with each incremental advance through the position iterations. This leads to

— A1)

the following observation: a single simulation step advancing 7 with n position
iterations is mathematically equivalent to n simulation steps, each advancing =
and running a single position iteration step.

Tracking Az; requires that the joint position is forward integrated using the
joint velocity. In doing so, time is advanced with each position iteration under
the requirement that after np position iterations time has advanced by 7. The
timestep p of each position iteration is as follows:

Pi= (40)

The joint position and joint velocity reported corresponds to the values cal-
culated during the last substep of the TGS position iteration. As a result, there
may be a large discrepancy between the joint velocity reported and the joint
velocity corresponding to the full timestep. This issue being particularly serious
when a high stiffness value is used. To minimize this undesirable behavior, the
target position is linearly interpolated at each substep following this expression

Tsupr = 7 — (T — ip) V. (41)

Accounting for Az; requires a modification to Equation , which, in turn,
produces a modification to Equation (L0J):

T; = X9 + Axi_q1 +v;T (42)
i = p (kp (@supr — (o + Azim1 +vi7)) + ka (v — v;)) (43)

Here, we have introduced a single extra term —pk,Ax;_; that does not
occur with PGS position iterations. One other mathematical difference is that
each TGS position iteration is the equivalent of computing \; but with Ay = 0.
The total impulse that accumulates over all position iterations is then simply
the sum over the series of impulses {\}} generated by the iteration sequence.
Substituting this observation together with the additional term —pk,Ax;_; into
Equation produces a final form for \; for force springs:

Xi = 2 (b+ pky (xr — (7 —ip) v — x0) — pkpAzi_g —avi—1) + Ai—1. (44)
This may be expressed using the parameters of ArticulationInternalConstraint:

Ai = driveTargetVelPlusInitialBias
+ driveVelMultiplier * v;_1
— driveBiasCoefficient * Ax;_1

+ driveTargetPosBias * (T —ip) (45)

The parameters driveTargetVelPlusInitialBias and driveVelMultiplier
set out for PGS hold true for TGS with the caveat that p replaces 7. The pa-
rameter driveBiasCoefficient is not strictly necessary for PGS: if PGS does
not track changes to position bias then driveBiasCoefficient will always be

multiplied by 0. The parameter is, however, strictly necessary for TGS and
again comes with the p replacement. Moreover, driveImpulseMultiplier has
value 1.0 for TGS because the accumulated force is the sum of the force applied
at each position iteration. Finally, driveTargetPosBias is only used for TGS
to smooth the tracking over all the substeps and is equal to 0 for PGS.

PGS Velocity Iteration

PGS velocity iterations are a direct continuation of position iterations. A key
point worth noting is that although all body positions are forward integrated
by 7 in-between position and velocity iterations, the updated positions do not
feed into Ax. Feeding Ax into the velocity iterations would require the spring
constraint to settle on a new state that was not encountered during the posi-
tion iterations. This could create less stable results whereby a single velocity
iteration would upset an equilibrium achieved over many position iterations and
actually require many velocity iterations to settle on a new equilibrium. The
expectation is that a single velocity iteration does not significantly affect the
reported applied force provided there are sufficient position iterations to reach
a stable equilibrium.

TGS Velocity Iteration

TGS velocity iterations ought to proceed in exactly the same manner as PGS
velocity iterations: the difference between TGS and PGS ought to be limited
to the time-stepping scheme employed during the position iterations to advance
body state by 7. In practice, however, this does not work out well, particularly
in situations with a large number of position iterations and a single velocity
iteration.

To better understand the problem is it worth considering the timeline of
PGS. PGS first computes an impulse over multiple position iterations and then
forward integrates position in a single 7 step. The change in position, however,
does not feed into the velocity iterations. This is crucially important because
it means that the addition of a single velocity iteration is no different to the
addition of an extra position iteration. A consequence of this observation is that
if there are sufficient position iterations to approach solver equilibrium then the
addition of a single velocity iteration makes no difference to the reported force.
TGS does not have this characteristic due to the time-stepping scheme employed
during the position iterations: with finite 7 it is not possible to reconstruct in a
single velocity iteration the accumulative effect of the sequence of -~ advances
that were computed during the position iterations. With TGS, the addltlon of
a single velocity iteration has a profound impact on the force applied by joint
drive. This is an undesired outcome that worsens as np increases.

A simple solution to the time-stepping discrepancy described above is to
freeze the accumulated force at the end of the position iterations. During the
velocity iterations the spring force plays no further role in determining the
velocity that is passed to the next simulation step. This is achieved by setting

the delta force at each velocity iteration to zero. This is a better solution than
computing a less reliable force that corresponds to a different time-stepping
scheme with larger 7.

