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Preliminaries

Mimic joints are designed to maintain a linear relationship between the posi-
tions of two degrees of freedom of an articulation instance. The two degrees of
freedom, henceforth labelled A and B, may be in any sub-tree of the articulation.

With ga(t) and ¢p(t) denoting the positions of the two degrees of freedom
and ¢4(t) and ¢p(t) denoting the speeds of the two degrees of freedom we may
introduce the position s(¢) and velocity v(t) of a mimic joint:

s(t) ={qa(t),qs(t)} (1)
v(t) = {4a(t),d(t)} (2)

The linear constraint C(t) coupling the two positions g4(t) and ¢p(t) has
the form:
C(t) = qa(t) + G- qp(t) +~7 =0 (3)

with G playing the role of a gearing ratio and « playing the role of a constant
offset between the two positions.

Constrained Dynamics

The constraint described in Equation will be maintained provided that
C (t) = dcdgt) = 0. Differentiating Equation with respect to time re-expresses
the mimic joint in terms of the speeds of the degrees of freedom of the mimic

joint:

Ga(t) + G- gp(t) =0 (4)

In practice, it is not possible to ensure that the constraint is resolved exactly.
Indeed, it is typical for errors to accumulate due to time discretization and
rounding error. There is also the possibility that the joints of the articulation
will be initially configured in a way that does not satisfy the mimic joint con-
straint. To avoid drift propagation and accumulation it is necessary to amend
Equation so that v(t) accounts for the velocity required to counteract at
least some of the error:

erp- C(t)

Qa(t) + G - p(t) + T

=0 (5)



where erp is a constant Baumgarte multiplier to correct a fraction of the er-
ror that might be present at time ¢ and At is the timestep of the simulation.
Increasing erp will more aggressively resolve the accumulated error but comes
with the risk of adding energy to the system because it necessarily overshoots
the ideal velocity that would occur with zero error.

The goal now is to compute impulses that may be applied to the degrees of
freedom A and B such that Equation is satisfied.

Test Impulses

The Featherstone formulation allows link impulses to be propagated inwards
from link to root and then the subsequent changes in link spatial velocity to
be propagated outwards from root to link. We extend this idea to be able to
also propagate impulses applied to individual degrees of freedom, which will be
analogous to joint actuation.

Consider a unit test impulse applied to degrees of freedom A and B. A test
impulse applied to A will change ¢a(t) but may also change ¢p(t). A test
impulse applied to B will likewise have an impact on ¢z(¢t) and may also have
an impact Ga(t).

[Note: The effect of a test impulse is described in[I] and is already a feature
of PhysX articulations. The difference here is that we have some extra book-
keeping to do to compute changes to mimic joint speed.]

We define r;; to be the effect of a test unit impulse applied to degree of
freedom j on the speed of degree of freedom i. Continuing with this notation,
we may compute r44, 7aB, TBB, 'BA- 1t is worth noting that r4p and rpa will
be 0 if the shortest path from A to B crosses a fixed root link.

Mimic Joint Impulse Computation

Equation (5)) may be recast in a familiar form:

Jot)+b=0 (6)
with the Jacobian J as follows:
_oC(t)

and the bias velocity b having the form:

erp - C(t)

b=—x

(8)

We may also express v(t) as the result of a constraint force Fo = {Fa, Fp}T
(stacked forces on degrees of freedom A and B, respectively) applied at ¢ — dt
to the velocity state v(t — dt):

v(t) =v(t —dt)+dt- M- Fg (9)



where M1

M71 _ TAA TAB (10)
TBA TBB

The goal is to compute a constraint force F that performs no work. A con-

straint force that performs no work will have the following form:

Fe=JT.f (11)

[Proof: The work of the constraint force is Fol - {v(t) — v(t — dt)} - dt. Assume
the nominal case of no prior constraint violation (C(t — dt) = 0), then substi-
tute Equations (6)) and into the expression for the work.]

Substituting Equation into @, projecting the equation into constraint-
space by pre-multiplying with J, and using (5 reveals the following relation-
ship:
b+J-v(t—dt)
J M- JgT
We seek the impulse dt-J7T - f. The impulse 14 applied to degree of freedom
A is therefore:

dt - f = (12)

Iy=dt-f (13)
and the impulse Iz applied to degree of freedom B is

Ip=dt-f-G (14)
For completeness it is worth expanding J - M1 . J7:

J- M JV ={rpga+G-(rap+rpa)+G?* - rpp} (15)

PGS and TGS Implementation

The constraint impulses described in Equations and guarantee to sat-
isfy the mimic joint in the absence of any other constraints or contacts that
impact v(t). In practice, however, it is not sufficient to resolve a constraint just
once per simulation step because a typical use case is multiple constraints that
compete with each other. The solution is to perform multiple passes over the
list of all constraints. This observation leads to a generalisation of the recipe
for computing and applying mimic joint constraint forces.

b+ J v,
J-M-1.JT

with b,, denoting the bias velocity recorded at the nth solver iteration and v,
denoting the velocity of the mimic joint as recorded at the nth solver iteration.
When the PGS solver is engaged both g4 and ¢p remain constant throughout
all solver iterations of the same simulation step. As a consequence, the bias
velocity b, and J- M~' - JT will also remain constant. The only variable that
may change from iteration to iteration is v,,.

dt - f = — (16)



The TGS solver, on the other hand, purposefully updates g4 and ¢p at the
end of each solver iteration. As a consequence, b, requires an update during
each solver iteration. The impulse responses 144, "4B, BB, "B and the de-
nominator J - M~'- JT ought to be similarly updated at the start of each solver
iteration. To save computation, however, the impulse responses and the denom-
inator are assumed to be constant during the progress of the TGS solver. This
approximation means that Equation may be applied without modification
to both TGS and PGS.

Extension To N Joints

The techniques outlined in this document may be readily extended to mimic
joints that linearly couple multiple degrees of freedom:

Ct)=q+Gr-q1+G2 g2+ ..Gn-1-gn-1+7 (17)

One key difference now is that the inverse mass matrix M ! will be a square
matrix of rank N instead of a square matrix of rank 2. Similarly, J will take the
form {1, G1, Gs.....Gn_1} and the impulse to apply to the ith degree of freedom
will be dt - f - G;.

Compliance

The preceding description of mimic joints presents them as a type of hard con-
straint; that is, a mimic joint will push as hard as required to resolve the con-
straint equation. The addition of erp permits a degree of compliance provided
0 < erp < 1. In the absence of geometric error C', however, the mimic joint
remains as a hard constraint and will push as hard as required to ensure that the
joint velocities are commensurate with the gear ratio. This becomes a problem
when the mimic joint interacts with other constraints that are also exceedingly
stiff such as contact, joint limit and kinematic drive. If nothing yields it is
impossible for the solver to find a balance between all the competing system
constraints. The outcome is typically an unstable system. This section shall de-
scribe a full model of compliance that allows mimic joints to exhibit any degree
of softness or stiffness.

A full model of compliance is remarkably simple and arises from the intro-
duction of an extra term cfm (constraint force mixing [2]):

Cn S+ J vy,

dt- f =—
/ r+cfm

(18)

with C,, denoting the bias at the nth solver iteration and r having the following
definition:
r=J-M 1. JT (19)

Multiplying numerator and denominator of Equation by chm) reveals



the following relationship:

Cn erp + J-vp
dt - f _ c]im_*;dt . cfm (20)

cfm

This can be viewed as analogous to the equation governing the impulse of a
spring simulated with implicit first order integration:

((:L' — IT)kp - dt + vg - dt(dt . k'p + kd)

dt- f = —
! T+ 7 di(dt - Fy + k)

(21)

with = denoting the spring position, 7 denoting the drive target, (x — z7)
representing the bias of the spring, vy the speed of the spring, k, the stiffness
of the spring, kg the damping of the spring and r the reciprocal of the sprung
mass.

A quick inspection of the two forms shown in Equations and allows
cfm and erp to be recast as spring constants k, and k4:

1
. 22
<M= Gtk + ko) (22)
dt -k,
— P 2
T (23)

A more natural representation of a spring’s properties may be found in nat-
ural frequency p [3] and damping ratio ¢ [4]:

p=ky-r (24)
¢=

1k,-
dal (25)

2 p

Combining the equations above, it is possible to express cfm and erp in
terms of r, u and (:

2
kp = M? (26)
kg = Q%C (27)
fm= S — (28)
I Gt dt * kp + kd)
_dt-kp
TP G kp + kd (29)
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