PxMat33T

Defined in include/foundation/Px.h

template<class Type>
class PxMat33T

3x3 matrix class

Some clarifications, as there have been much confusion about matrix formats etc in the past.

Short:

  • Matrix have base vectors in columns (vectors are column matrices, 3x1 matrices).

  • Matrix is physically stored in column major format

  • Matrices are concaternated from left

Long: Given three base vectors a, b and c the matrix is stored as

|a.x b.x c.x| |a.y b.y c.y| |a.z b.z c.z|

Vectors are treated as columns, so the vector v is

|x| |y| |z|

And matrices are applied before the vector (pre-multiplication) v’ = M*v

|x’| |a.x b.x c.x| |x| |a.x*x + b.x*y + c.x*z| |y’| = |a.y b.y c.y| * |y| = |a.y*x + b.y*y + c.y*z| |z’| |a.z b.z c.z| |z| |a.z*x + b.z*y + c.z*z|

Physical storage and indexing: To be compatible with popular 3d rendering APIs (read D3d and OpenGL) the physical indexing is

|0 3 6| |1 4 7| |2 5 8|

index = column*3 + row

which in C++ translates to M[column][row]

The mathematical indexing is M_row,column and this is what is used for _-notation so _12 is 1st row, second column and operator(row, column)!

Public Functions

inline PxMat33T()

Default constructor.

inline PxMat33T(PxIDENTITY)

identity constructor

inline PxMat33T(PxZERO)

zero constructor

inline PxMat33T(const PxVec3T<Type> &col0, const PxVec3T<Type> &col1, const PxVec3T<Type> &col2)

Construct from three base vectors.

inline explicit PxMat33T(Type r)

constructor from a scalar, which generates a multiple of the identity matrix

inline explicit PxMat33T(Type values[])

Construct from Type[9].

inline explicit PxMat33T(const PxQuatT<Type> &q)

Construct from a quaternion.

inline PxMat33T(const PxMat33T &other)

Copy constructor.

inline PxMat33T &operator=(const PxMat33T &other)

Assignment operator.

inline bool operator==(const PxMat33T &m) const

returns true if the two matrices are exactly equal

inline const PxMat33T getTranspose() const

Get transposed matrix.

inline const PxMat33T getInverse() const

Get the real inverse.

inline Type getDeterminant() const

Get determinant.

inline const PxMat33T operator-() const

Unary minus.

inline const PxMat33T operator+(const PxMat33T &other) const

Add.

inline const PxMat33T operator-(const PxMat33T &other) const

Subtract.

inline const PxMat33T operator*(Type scalar) const

Scalar multiplication.

inline const PxVec3T<Type> operator*(const PxVec3T<Type> &vec) const

Matrix vector multiplication (returns ‘this->transform(vec)’)

inline const PxMat33T operator*(const PxMat33T &other) const

Matrix multiplication.

inline PxMat33T &operator+=(const PxMat33T &other)

Equals-add.

inline PxMat33T &operator-=(const PxMat33T &other)

Equals-sub.

inline PxMat33T &operator*=(Type scalar)

Equals scalar multiplication.

inline PxMat33T &operator*=(const PxMat33T &other)

Equals matrix multiplication.

inline Type operator()(PxU32 row, PxU32 col) const

Element access, mathematical way!

inline Type &operator()(PxU32 row, PxU32 col)

Element access, mathematical way!

inline const PxVec3T<Type> transform(const PxVec3T<Type> &other) const

Transform vector by matrix, equal to v’ = M*v.

inline const PxVec3T<Type> transformTranspose(const PxVec3T<Type> &other) const

Transform vector by matrix transpose, v’ = M^t*v.

inline const Type *front() const
inline PxVec3T<Type> &operator[](PxU32 num)
inline const PxVec3T<Type> &operator[](PxU32 num) const

Public Members

PxVec3T<Type> column0
PxVec3T<Type> column1
PxVec3T<Type> column2

Public Static Functions

static inline const PxMat33T createDiagonal(const PxVec3T<Type> &d)

Construct from diagonal, off-diagonals are zero.

static inline const PxMat33T outer(const PxVec3T<Type> &a, const PxVec3T<Type> &b)

Computes the outer product of two vectors.

Friends

template<class Type2>
inline friend PxMat33T<Type2> operator*(Type2, const PxMat33T<Type2>&)