Program Listing for include/foundation/PxQuat.h

↰ Return to documentation for include/foundation/PxQuat.h

// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of NVIDIA CORPORATION nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2022 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.

#ifndef PX_QUAT_H
#define PX_QUAT_H

#include "foundation/PxVec3.h"
#if !PX_DOXYGEN
namespace physx
{
#endif

template<class Type>
class PxQuatT
{
  public:

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT()
    {
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT(PxIDENTITY) : x(Type(0.0)), y(Type(0.0)), z(Type(0.0)), w(Type(1.0))
    {
    }

    explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT(Type r) : x(Type(0.0)), y(Type(0.0)), z(Type(0.0)), w(r)
    {
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT(Type nx, Type ny, Type nz, Type nw) : x(nx), y(ny), z(nz), w(nw)
    {
    }

    PX_CUDA_CALLABLE PX_INLINE PxQuatT(Type angleRadians, const PxVec3T<Type>& unitAxis)
    {
        PX_ASSERT(PxAbs(Type(1.0) - unitAxis.magnitude()) < Type(1e-3));
        const Type a = angleRadians * Type(0.5);

        Type s;
        PxSinCos(a, s, w);
        x = unitAxis.x * s;
        y = unitAxis.y * s;
        z = unitAxis.z * s;
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT(const PxQuatT& v) : x(v.x), y(v.y), z(v.z), w(v.w)
    {
    }

    PX_CUDA_CALLABLE PX_INLINE explicit PxQuatT(const PxMat33T<Type>& m); /* defined in PxMat33.h */

    PX_CUDA_CALLABLE PX_FORCE_INLINE bool isIdentity() const
    {
        return x==Type(0.0) && y==Type(0.0) && z==Type(0.0) && w==Type(1.0);
    }

    PX_CUDA_CALLABLE bool isFinite() const
    {
        return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z) && PxIsFinite(w);
    }

    PX_CUDA_CALLABLE bool isUnit() const
    {
        const Type unitTolerance = Type(1e-3);
        return isFinite() && PxAbs(magnitude() - Type(1.0)) < unitTolerance;
    }

    PX_CUDA_CALLABLE bool isSane() const
    {
        const Type unitTolerance = Type(1e-2);
        return isFinite() && PxAbs(magnitude() - Type(1.0)) < unitTolerance;
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxQuatT& q) const
    {
        return x == q.x && y == q.y && z == q.z && w == q.w;
    }

    PX_CUDA_CALLABLE PX_INLINE void toRadiansAndUnitAxis(Type& angle, PxVec3T<Type>& axis) const
    {
        const Type quatEpsilon = Type(1.0e-8);
        const Type s2 = x * x + y * y + z * z;
        if(s2 < quatEpsilon * quatEpsilon) // can't extract a sensible axis
        {
            angle = Type(0.0);
            axis = PxVec3T<Type>(Type(1.0), Type(0.0), Type(0.0));
        }
        else
        {
            const Type s = PxRecipSqrt(s2);
            axis = PxVec3T<Type>(x, y, z) * s;
            angle = PxAbs(w) < quatEpsilon ? Type(PxPi) : PxAtan2(s2 * s, w) * Type(2.0);
        }
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE Type getAngle() const
    {
        return PxAcos(w) * Type(2.0);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE Type getAngle(const PxQuatT& q) const
    {
        return PxAcos(dot(q)) * Type(2.0);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE Type magnitudeSquared() const
    {
        return x * x + y * y + z * z + w * w;
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE Type dot(const PxQuatT& v) const
    {
        return x * v.x + y * v.y + z * v.z + w * v.w;
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT getNormalized() const
    {
        const Type s = Type(1.0) / magnitude();
        return PxQuatT(x * s, y * s, z * s, w * s);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE Type magnitude() const
    {
        return PxSqrt(magnitudeSquared());
    }

    // modifiers:
    PX_CUDA_CALLABLE PX_FORCE_INLINE Type normalize() // convert this PxQuatT to a unit quaternion
    {
        const Type mag = magnitude();
        if(mag != Type(0.0))
        {
            const Type imag = Type(1.0) / mag;

            x *= imag;
            y *= imag;
            z *= imag;
            w *= imag;
        }
        return mag;
    }

    /*
    \brief returns the conjugate.

    \note for unit quaternions, this is the inverse.
    */
    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT getConjugate() const
    {
        return PxQuatT(-x, -y, -z, w);
    }

    /*
    \brief returns imaginary part.
    */
    PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type> getImaginaryPart() const
    {
        return PxVec3T<Type>(x, y, z);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type> getBasisVector0() const
    {
        const Type x2 = x * Type(2.0);
        const Type w2 = w * Type(2.0);
        return PxVec3T<Type>((w * w2) - Type(1.0) + x * x2, (z * w2) + y * x2, (-y * w2) + z * x2);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type> getBasisVector1() const
    {
        const Type y2 = y * Type(2.0);
        const Type w2 = w * Type(2.0);
        return PxVec3T<Type>((-z * w2) + x * y2, (w * w2) - Type(1.0) + y * y2, (x * w2) + z * y2);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3T<Type> getBasisVector2() const
    {
        const Type z2 = z * Type(2.0);
        const Type w2 = w * Type(2.0);
        return PxVec3T<Type>((y * w2) + x * z2, (-x * w2) + y * z2, (w * w2) - Type(1.0) + z * z2);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T<Type> rotate(const PxVec3T<Type>& v) const
    {
        const Type vx = Type(2.0) * v.x;
        const Type vy = Type(2.0) * v.y;
        const Type vz = Type(2.0) * v.z;
        const Type w2 = w * w - 0.5f;
        const Type dot2 = (x * vx + y * vy + z * vz);
        return PxVec3T<Type>((vx * w2 + (y * vz - z * vy) * w + x * dot2), (vy * w2 + (z * vx - x * vz) * w + y * dot2),
                             (vz * w2 + (x * vy - y * vx) * w + z * dot2));
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3T<Type> rotateInv(const PxVec3T<Type>& v) const
    {
        const Type vx = Type(2.0) * v.x;
        const Type vy = Type(2.0) * v.y;
        const Type vz = Type(2.0) * v.z;
        const Type w2 = w * w - 0.5f;
        const Type dot2 = (x * vx + y * vy + z * vz);
        return PxVec3T<Type>((vx * w2 - (y * vz - z * vy) * w + x * dot2), (vy * w2 - (z * vx - x * vz) * w + y * dot2),
                            (vz * w2 - (x * vy - y * vx) * w + z * dot2));
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator=(const PxQuatT& p)
    {
        x = p.x;
        y = p.y;
        z = p.z;
        w = p.w;
        return *this;
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator*=(const PxQuatT& q)
    {
        const Type tx = w * q.x + q.w * x + y * q.z - q.y * z;
        const Type ty = w * q.y + q.w * y + z * q.x - q.z * x;
        const Type tz = w * q.z + q.w * z + x * q.y - q.x * y;

        w = w * q.w - q.x * x - y * q.y - q.z * z;
        x = tx;
        y = ty;
        z = tz;
        return *this;
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator+=(const PxQuatT& q)
    {
        x += q.x;
        y += q.y;
        z += q.z;
        w += q.w;
        return *this;
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator-=(const PxQuatT& q)
    {
        x -= q.x;
        y -= q.y;
        z -= q.z;
        w -= q.w;
        return *this;
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT& operator*=(const Type s)
    {
        x *= s;
        y *= s;
        z *= s;
        w *= s;
        return *this;
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator*(const PxQuatT& q) const
    {
        return PxQuatT(w * q.x + q.w * x + y * q.z - q.y * z, w * q.y + q.w * y + z * q.x - q.z * x,
                      w * q.z + q.w * z + x * q.y - q.x * y, w * q.w - x * q.x - y * q.y - z * q.z);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator+(const PxQuatT& q) const
    {
        return PxQuatT(x + q.x, y + q.y, z + q.z, w + q.w);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator-() const
    {
        return PxQuatT(-x, -y, -z, -w);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator-(const PxQuatT& q) const
    {
        return PxQuatT(x - q.x, y - q.y, z - q.z, w - q.w);
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuatT operator*(Type r) const
    {
        return PxQuatT(x * r, y * r, z * r, w * r);
    }

    Type    x, y, z, w;
};

typedef PxQuatT<float>  PxQuat;
typedef PxQuatT<double> PxQuatd;

#if !PX_DOXYGEN
} // namespace physx
#endif

#endif