include/foundation/PxVec4.h

File members: include/foundation/PxVec4.h

// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of NVIDIA CORPORATION nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2024 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.

#ifndef PX_VEC4_H
#define PX_VEC4_H

#include "foundation/PxMath.h"
#include "foundation/PxVec3.h"

#if !PX_DOXYGEN
namespace physx
{
#endif

template<class Type>
class PxVec4T
{
  public:
    PX_CUDA_CALLABLE PX_INLINE PxVec4T()
    {
    }

    PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec4T(PxZERO) : x(Type(0.0)), y(Type(0.0)), z(Type(0.0)), w(Type(0.0))
    {
    }

    explicit PX_CUDA_CALLABLE PX_INLINE PxVec4T(Type a) : x(a), y(a), z(a), w(a)
    {
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T(Type nx, Type ny, Type nz, Type nw) : x(nx), y(ny), z(nz), w(nw)
    {
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T(const PxVec3T<Type>& v, Type nw) : x(v.x), y(v.y), z(v.z), w(nw)
    {
    }

    explicit PX_CUDA_CALLABLE PX_INLINE PxVec4T(const Type v[]) : x(v[0]), y(v[1]), z(v[2]), w(v[3])
    {
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T(const PxVec4T& v) : x(v.x), y(v.y), z(v.z), w(v.w)
    {
    }

    // Operators

    PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator=(const PxVec4T& p)
    {
        x = p.x;
        y = p.y;
        z = p.z;
        w = p.w;
        return *this;
    }

    PX_CUDA_CALLABLE PX_INLINE Type& operator[](unsigned int index)
    {
        PX_ASSERT(index <= 3);
        return reinterpret_cast<Type*>(this)[index];
    }

    PX_CUDA_CALLABLE PX_INLINE const Type& operator[](unsigned int index) const
    {
        PX_ASSERT(index <= 3);
        return reinterpret_cast<const Type*>(this)[index];
    }

    PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxVec4T& v) const
    {
        return x == v.x && y == v.y && z == v.z && w == v.w;
    }

    PX_CUDA_CALLABLE PX_INLINE bool operator!=(const PxVec4T& v) const
    {
        return x != v.x || y != v.y || z != v.z || w != v.w;
    }

    PX_CUDA_CALLABLE PX_INLINE bool isZero() const
    {
        return x == Type(0) && y == Type(0) && z == Type(0) && w == Type(0);
    }

    PX_CUDA_CALLABLE PX_INLINE bool isFinite() const
    {
        return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z) && PxIsFinite(w);
    }

    PX_CUDA_CALLABLE PX_INLINE bool isNormalized() const
    {
        const Type unitTolerance = Type(1e-4);
        return isFinite() && PxAbs(magnitude() - Type(1.0)) < unitTolerance;
    }

    PX_CUDA_CALLABLE PX_INLINE Type magnitudeSquared() const
    {
        return x * x + y * y + z * z + w * w;
    }

    PX_CUDA_CALLABLE PX_INLINE Type magnitude() const
    {
        return PxSqrt(magnitudeSquared());
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T operator-() const
    {
        return PxVec4T(-x, -y, -z, -w);
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T operator+(const PxVec4T& v) const
    {
        return PxVec4T(x + v.x, y + v.y, z + v.z, w + v.w);
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T operator-(const PxVec4T& v) const
    {
        return PxVec4T(x - v.x, y - v.y, z - v.z, w - v.w);
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T operator*(Type f) const
    {
        return PxVec4T(x * f, y * f, z * f, w * f);
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T operator/(Type f) const
    {
        f = Type(1.0) / f;
        return PxVec4T(x * f, y * f, z * f, w * f);
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator+=(const PxVec4T& v)
    {
        x += v.x;
        y += v.y;
        z += v.z;
        w += v.w;
        return *this;
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator-=(const PxVec4T& v)
    {
        x -= v.x;
        y -= v.y;
        z -= v.z;
        w -= v.w;
        return *this;
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator*=(Type f)
    {
        x *= f;
        y *= f;
        z *= f;
        w *= f;
        return *this;
    }
    PX_CUDA_CALLABLE PX_INLINE PxVec4T& operator/=(Type f)
    {
        f = Type(1.0) / f;
        x *= f;
        y *= f;
        z *= f;
        w *= f;
        return *this;
    }

    PX_CUDA_CALLABLE PX_INLINE Type dot(const PxVec4T& v) const
    {
        return x * v.x + y * v.y + z * v.z + w * v.w;
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T getNormalized() const
    {
        const Type m = magnitudeSquared();
        return m > Type(0.0) ? *this * PxRecipSqrt(m) : PxVec4T(Type(0));
    }

    PX_CUDA_CALLABLE PX_INLINE Type normalize()
    {
        const Type m = magnitude();
        if(m > Type(0.0))
            *this /= m;
        return m;
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T multiply(const PxVec4T& a) const
    {
        return PxVec4T(x * a.x, y * a.y, z * a.z, w * a.w);
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T minimum(const PxVec4T& v) const
    {
        return PxVec4T(PxMin(x, v.x), PxMin(y, v.y), PxMin(z, v.z), PxMin(w, v.w));
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec4T maximum(const PxVec4T& v) const
    {
        return PxVec4T(PxMax(x, v.x), PxMax(y, v.y), PxMax(z, v.z), PxMax(w, v.w));
    }

    PX_CUDA_CALLABLE PX_INLINE PxVec3T<Type> getXYZ() const
    {
        return PxVec3T<Type>(x, y, z);
    }

    Type    x, y, z, w;
};

template<class Type>
PX_CUDA_CALLABLE static PX_INLINE PxVec4T<Type> operator*(Type f, const PxVec4T<Type>& v)
{
    return PxVec4T<Type>(f * v.x, f * v.y, f * v.z, f * v.w);
}

typedef PxVec4T<float>  PxVec4;
typedef PxVec4T<double> PxVec4d;

#if !PX_DOXYGEN
} // namespace physx
#endif

#endif